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Abstract

The aim of this contribution is to apply methods from optimal control theory to the
mathematical modeling of biological pest control. We formulate a pest control strategy for
nonlinear Kolmogorov system of n interacting populations by introducing natural enemies as
a control function. The sufficient conditions for existence of an optimal feedback control
function are based on the fact, that the steady-state solution of the Hamilton-Jacobi-Bellman
partial differential equation is a Lyapunov function guaranteeing stability and optimality We
apply those general results to the Lotka-Volterra system with a logistic rate of increase of the
prey population and Holling’s second type functional response of the predator population, to
illustrate biological control of pest mite in stored grain Acarus siro by predatory mite
Cheyletus eruditus.
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1. Introduction

Optimal control theory acquires an increased application in both theoretical and applied
ecology and epidemiology. It is a main method of adaptive resource management, sustainable
ecosystem management ([ 13]), optimal harvesting and foraging theory ([1], [8], [12]), native-
invasive population dynamics ([6], [3]) and pest management programs ([ 14]).

Most of pest control methods are based on chemical insecticides. Chemical controls are
inexpensive to use and very effective but with high environmental cost. There appears a
tendency to use natural enemies to suppress pest population and thus making it less damaging.
This approach is called biological control (BC). Role of BC is to stabilize the density of the
pest population in the level of non-economic and non-ecologic damage by predators,
parasites, parasitoids or pathogens. BC sometimes includes genetic manipulations to increase
the resistance of organisms such as sterilization and disturbance of mate finding ability ([4]).

The theoretical and experimental studies show, that successful natural enemy must have
some qualities: it is specific for the pest population, it has high intrinsic growth rate, high
search capability, synchronous dynamic and aggregates in areas with a high density of pest
population. There are three types of BC: (1) importing and introducing natural enemies of the
original geographic area, (2) augmentation of a large population of natural enemies for
immediate effect or periodic augmentation ofa small population of natural enemies, (3)
conservation of environment in order to preserve existing natural enemies.

In this paper we focus on the use of optimal control theory to the mathematical modeling
of BC through the non-recurring augmentation of natural enemies. In general BC is modeled
as predator-prey or host-parasitoid type systems. We organized this paper as follows. In
Section 2 we present the optimal control problem of the nonlinear Kolmogorov system. In
Section 3 we apply this approach to control the predator-prey system and finally conclusion
and references are given.

2. Formulation of the control problem

Optimal control theory is one of several applications and extensions of the calculus of
variations ([5]). It deals with finding an admissible control function that minimizes the
performance measure functional with differential equation constraints. It is known, that the
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nonlinear optimal control problem (nonquadratic functional with nonlinear differential
equations) can be reduced to the Hamilton-Jacobi-Bellman nonlinear partial differential
equation ([7]). There are many problems in its solution except the case of linear regulator
problem (quadratic functional with linear differential equations), where the Hamilton-Jacobi-
Bellman partial equation is reduced to the Riccati system of nonlinear ordinary differential
equations and it can be shown, that the solution is a Lyapunov function.

Bernstein ([2]) rewied a framework for optimal nonlinear problems involving nonquadratic
functionals that is analogous to linear-quadratic theory. He investigated time-invariant
systems on the infinite interval. In such case the steady state solution of the Hamilton-Jacobi-
Bellman equation is a Lyapunov function of the nonlinear system, guaranteeing stability and
optimality.

We formulate a pest control strategy for Kolmogorov model of » interacting species

i = %5 Ll @95 00 S 58a) = Gel @y 89,0005 ¥ ) (1)
or in vector form
% = G(x), )

where y; is density of i-th species at the time ¢, fi(x;x2-...x,) 1s nonlinear continuous
function for i = 1,...,n and it expresses growth rate of the i-th species depending on densities
of all of the species.
Suppose, that the right-hand side of (2) can be divided into linear and nonlinear parts
x = Ax+ hix), 3)

- L . . . . .
where & = """ is a constant matrix, h(x) is a vector of nonlinear functions. We

L

introduce into the system (3) natural enemies represented by control vector 1 & £ with
constant matrix I3 € [R"*™ :
X = AX + hix)+ Bu 4

The aim of this control is to move the system to the desired steady state
X = [0 “ul ", in which the pest density is stable without causing damages and natural
enemy density is stabilized at the level, that will allow further control. The desired steady
state satisfies the following system

0= Ax"+ h(x") + Bu".

But in general, the desired steady state can be unstable. To avoid this obstacle, the control
strategy must be sum of two control vectors W = u’ + f.where U ensures asymptotical
stability.

Define new variables

y=x-x', un=u-nu". Q)
Substituting (5) into (4) we get the "error" system:
¥ = AlY+Xx )+ hly+x |+ Bu +u)=

Av+hiv+x")+Bid+ Ax"™ +Bu” + hix") —hix")] =
= Avihiy4+x")-h(x")4Ba=

= Ay +qly)+ Bu, (6)

where Al¥) = hiy +x") — hix"}

Based on the results of ([2]) we prove the next theorem:

T = ik

Theorem 1. Consider general nonlinear system with time-dependent At} = B

y = A(t)y +qly) + Bu, v(0) = vo, g(0) = 0. (7)

If there exist symmetric positive definite matrix Q(f) and positive definite matrix R(?),
such that

lly) =y Qv - aly) Py - y Paly)
is positive definite function. Then the linear control function
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a=-R'B'Py, ®)
that moves the system (7) from initial state to the desired final state ¥} = 0 minimizing
functional

t t
7= f " Liy(t), i(t))dt = [ (itye) +a) Ra ) ar, o
0 [1]

is optimal; the matrix P(¢) is symmetric positive definite solution of Riccati equation

P+PA+A'P-PEBR'B'P+Q=0. (10)

Proof. According to the Theorem 3.1 and Remark 4.1 of ([2]) we know, that if the

minimum of (9) exists and V' is a smooth function of the initial conditions, then it satisfies the
following Hamilton-Jacobi-Bellman equation:

||.||r|1'!|"':') — 0 (1)

1] 1] L
where " denotes the Fréchet derivative. Let us consider function
Vivl=y Pitly, (12)
where P(?) satisfies (10). Then the derivative on the optimal trajectory with (8) according
to (7) is

dViw) T T peo =
= Py + Py +wv Py =
- y Py+y Py+y' Py a3

aly) ' Py—y P BIR Y)Y B Py—y Qv +y' Pqly).

min [Liy,a) + V{¥}{Ay + q(y) + Ba)} = min (n'[_v] - R+

Substituting (13) into (11) we obtain
aly) Py -y PTBR Y B Py—y Qv+y Paly)+Hy)+¥y PTBIRY'B Py =0
so from that
lyl =¥ Qv —qly} Py —y Pqy)

Then V' equalsto ¥ = =¥} — 11’ R and it is negative definite for both I{y), R
positive definite. Thus function ¥(y) is Lyapunov and then the system is locally
asymptotically stable.

Remark 1. Theorem 1 holds also for the systems with constant matrix A. In such case

' = ™ matrices Q, R are constant and constant matrix P is symmetric positive definite
solution of algebraic Riccati equation

PA+ATP-PBR'B'P+Q=0.

3. Application to the biological control of Acarus siro

The mite Acarus siro is one of the most important pests of stored products. It infests
cereals, oilseeds, cheese, grain. Biological control was already developed 40 years ago using a
predatory mite Cheyletus eruditus ([10]). To describe Acarus-Cheyletus dynamics
mathematically we use the predator-prey model with Holling II type functional response of
predator population and logistic growth of prey population ([9]):

o T [Ty (14)
i ri I{.l h'] S ais

. axy ;

v “lTarz Y (15)

Here, y = x(t) and y = y(?) denote a time dependent abundance of prey Acarus and predator
Cheyletus populations, respectively, the parameters , K denote the prey intrinsic growth rate,
carrying capacity of the environment for the prey population and the parameters d, ¢, a, T
denote the predator mortality rate, conversion efficiency, predation rate (also called capture
efficiency, search rate), handling time including time required for chasing, killing, eating and
digesting the prey.
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The standard qualitative analysis states that the system (14), (15) has one stable interior
equilibrium. This fact is also illustrated by simulations performed in R ([11]) for given
parameters » = 0.4, K = 500, d = 0.08, ¢ = 0.8, T = 0.5, & = 0.001 ([10]) with initial state

[100;20], [300;2] respectively, in the Figure 1.
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Figure 1. Density variations of the Acarus-Cheyletus model (14), (15) without control strategy

The aim is to control the dynamics by massive augmentation of the natural enemy
Cheyletus to move the system to the desired steady-state y*, y*, where the pest abundance y*
should be equal and below the pest damage level. The controlled system (14), (15) is of the

following form:

: — oy ( 12 ) ary
S K 1 +alz’ (16)
. axry
= —dy+u,
d “1 +alx T a7
and the next holds
o e (1 " axtyt (18)
= rr _— ] - —
J Iy 1 4+ al'zx*
axty® . N
. 19
1 ¢ ol diy™ + u’ . (19)
Since y* is given by the known values causing damage, from (18) we get
r " i
== {l4ax' T 1l - —
¥ a- i : i
and from (19) we get
' x" i
' =r [:l — Il_) (r +dx™T —-e".."') B
K i1

Now substituting new variables * =~ 4", = = —x" v =y~ ¥ into (16), (17) we

construct an error system:

o (g = ax®)

) ."'I & F rz* 2 riz*)? I 1 :I
ok '.".:I 7 A "\T ™ TlazT +az"T 4 1)/ azl'4uarT 411

A

L = il .'( : n '} o laz 4 ar®) N
S ) y T TleT4+aerT+1),/ al+ozT4+1 o

The linear part of the error system can be represented by constant matrix
p - l
1 —-2— — =
(1aZ) -k
(20)
0 dt =

Then the control matrix & =0.1" and @ £ B**" is the remaining nonlinear part of the error
system. For parameters » = 0.4, K = 500, d = 0.08, ¢ = 0.8, 7= 0.5, a = 0.001 and given
desired state y *=18, we compute y*=389.0704, ©*=25.57299. The matrix (20) has the form
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(L3712 -2°
A= ( 0 08 ) '
1 0
e-(y 7). R0

and solving the algebraic Riccati equation we obtain

Choosing

p_ [ 22697 —].1i.‘iria|ij]
_(—].U.'Sﬁ[i L6629

Finally based on the Theorem 1 we compute the optimal control function % for the error
system
i = 1.0472: — 3.0980r = 1.5472x — 3.0980y + 1572.026 ,

hence the optimal control fiction u of the Acarus-Cheyletus system equals

=4+ u = Lo4Tadr — 3.5980u + 1.397.5899
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Figure 2. Density variations of the Acarus-Cheyletus model (14), (15) with control strategy

4. Conclusion

In this article we present a mathematical model for biological pest control. The control
problem for nonlinear system is investigated in order to formulate the optimal control strategy
by only introducing natural enemies. As an application we analyze the predator-pest system of
two mites Acarus siro and Cheyletus eruditus. We derive the linear control «, that is a sum of
the feedforward control function u* and feedback control function U.. As the Figure 2 shows,
the control u drives the trajectories of the Acarus-Cheyletus system from initial state after the
massive augmentation of the Cheyletus population to the desired state y* below the pest
damage level.
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