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Abstract

The optimal portfolio selection problem has always been the most important issue in the
modern economy. In this Study, It has been shown that how an investment with n risky share
can achieve the certain profits with less risk that spread between stocks. Such a portfolio, it is
called an efficient portfolio and it is necessary to find solving the optimization problem.
Hence, the Improved Particle Swarm Optimization algorithm is used. The value of Portfolio
and its risk are applied as the parameters in optimizing aim and criterion value exposed to
contingent risk. Three intended applications have been indicated to the portfolio. In the next
stage ,to evaluate and validate the method and to estimate the value of the portfolio in the next
days and hold the series of the stock prices ,within a specified period, to predict the price and
The Autoregressive method algorithms is used for modeling of the time-series. Practical result
achieved for solving the portfolio optimization problem in Tehran Stock Exchange for the
next day, by choosing the basket which includes 20 companies among the 30 most active
industry indicates the performance and high capability of the algorithms and used in solving
constrained optimization and appropriate weighted portfolios.

Keywords: Portfolio Selection, Conditional Value at Risk, Particle Swarm Optimization
algorithm, Price and Return Forecasting
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1. Introduction

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ut massa in lectus dictum
dictum. In dapibus, risus non porta placerat, felis erat imperdiet diam, pellentesque tincidunt
nunc nibh in arcu. Vestibulum vel tellus in lectus molestie ultrices. Suspendisse dictum, risus
ac ultricies pulvinar, enim arcu imperdiet quam, ut tempor risus nulla at ligula. Pellentesque
ut quam ac augue imperdiet tempor sed vitae nunc. Nulla finibus posuere felis, ut accumsan
quam tristique eget. Sed ornare, velit in volutpat volutpat, erat leo vestibulum velit, sit amet
venenatis purus metus non enim. Nam eget porta nibh. Duis ac convallis odio, eu consequat
enim. Praesent ornare commodo nisi at accumsan. Mauris tempus diam enim, ac elementum
nisi dapibus faucibus.

Today the connection between engineering and economics mathematics has become one of
the famous fields in academic research. In this area, portfolio optimization problem has
always been the most important problem in modern economy and because of its widely used
and difficult calculation; it has still been the focus point of many researchers. Portfolio is the
proper combination of stocks or other assets that are bought by an investor. In the other word,
portfolio optimization is the selection of best financial assets combination, in a way that its
return is maximized and its risk is minimized. So, the primary variables in risk management
are risk, return and the pay off between them.

In portfolio selection theory, some of the risk's measures, add some difficulty to the
problem and make it non-convex or non-differentiable. Moreover, the constraints in model
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make the feasible area as a non-convex area. Because of the complicated problem,
optimization tools are limited to the group of tools that can obtain proper simplicity. These
constraints in the model are the reasons of evolutionary algorithms usage and their extensions
(Tehrani, Siri, 2009).

Modern portfolio theory aims to allocate assets by maximizing the expected risk premium
per unit of risk. In a mean variance framework risk is defined in terms of the possible
variation of expected portfolio returns. The focus on standard deviation as the appropriate
measure for risk implies that investors weigh the probability of negative returns equally
against positive returns.

However it is a stylized fact that the distribution of many financial return series is non-
normal, with skewness and kurtosis pervasive. Furthermore there is ample evidence that
agents often treat losses and gains asymmetrically. There is a wealth of experimental evidence
for loss aversion <see, for example, Kahne-man et al., 1990). The choice therefore of mean
variance ancient portfolios is likely to give rise to a nescient strategy for optimizing expected
returns for financial assets whilst minimizing risk. It would therefore be more desirable to
focus on a measure for risk that is able to incorporate any non-normality in the return
distributions of financial assets. Indeed risk measures such as semi- variance were originally
constructed in order to measure the negative tail of the distribution separately. Typically
mainstream finance rests on the assumption of normality, so that move away from the
assumption of normally distributed returns is not particularly favored; one drawback often
stated is the loss in the possibility of moving between discrete and continuous time
frameworks. However it is precisely this simplifying approach, whereby any deviations from
the square root of time rule are ignored, which needs to be incorporated into current finance
theory. The ability to focus on additional moments in the return distribution with the
possibility of allowing for skewed or leptokurtic distributions enables additional risk factors
along with the use of standard deviation) to be included into the optimal portfolio selection
problem.

There are several reasons why we consider downside risk and shortfall constraints in
optimal portfolio selection. First, there is an extensive literature on safety-first investors who
minimize the chance of disaster, introduced by Roy (1952), Telser (1955), Baumol (1963),
and Levy and Sarnat(1972). Safety-first investor uses a downside risk measure which is a
function of Value-at-Risk (VaR).Roy (1952) indicates that most investors are principally
concerned with avoiding a possible disaster and that the principle of safety plays a crucial role
in the decision-making process. In other words, the idea of a disaster exists and a risk adverse
safety-first investor will seek to reduce the chance of such a catastrophe occurring as far as
possible. Second, we believe optimal portfolio selection under limited downside risk to be a
practical problem. Even if agents are endowed with standard concave utility functions such
that to a first- order approximation they would be mean-variance optimizers, practical
circumstances such as short-sale and liquidity constraints as well as some loss constraints
such as maximum drawdown commonly used by portfolio managers often impose restrictions
that elicit asymmetric treatment of upside potential and downside risk. Third, the mean-
variance portfolio theory developed by Markowitz (1952a, 1959) critically relies on two
assumptions. Either the investors have a quadratic utility or the asset returns are jointly
normally distributed (see Levy and Markowitz (1979), Chamberlain (1983) and Berk (1997)).
Both assumptions are not required, just one or the other: (i) If an investor has quadratic
preferences, she cares only about the mean and variance of returns; and the skewness and
kurtosis of returns have no effect on expected utility, i.e., she will not care, for example, about
extreme losses. (i) Mean-variance optimization can be justified if the asset returns are jointly
normally distributed since the mean and variance will completely describe the distribution.
However, the empirical distribution of asset returns is typically skewed, peaked around the
mode, and has fat-tails, implying that extreme events occur much more frequently than
predicted by the normal distribution. Therefore, the traditional measures of market risk (e.g.,
variance or standard deviation) are not appropriate to approximate the maximum likely loss
that a firm can expect to lose, especially under highly volatile periods

So, the purpose of present paper is to find portfolio x with favorable minimum risk. To
find this portfolio, it is required to solve portfolio optimization problem. At first, an efficient
criterion is introduced to measure risk and then, three applicable constraints are considered for
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portfolio. Next, optimization algorithms are used to solve portfolio problem. Also, in this
paper, solving this problem for the next day is considered, and risk, return and capital value
parameters are calculated for the next day.

2. Review of Literature

In general, portfolio theory can be divided into modern and post-modern groups. Modern
portfolio theory was introduce in an article by the name of (portfolio selection) by harry
Markowitz in 1952. Thirty eight years later, Markowitz, Merton Miller and Sharpe won noble
prize for (extended portfolio selection theory) in 1990. In 1952, he explained portfolio theory
by Mean-Variance model. Some years later, this theory became the base of other theory. In a
way that, risk became quantitative criterion for the first time. Before Markowitz, for
evaluating portfolio performance investors focused just on one of the criteria. But Markowitz,
explained the model in details and offered investors portfolio diversification in order to
change stocks risk and return with portfolio risk and return criteria (Markowitz, 1952).

In post-modern portfolio theory, that introduced by Ram, Fergosen, Kaplan and Sigel in
1994, portfolio optimization and investors behavior was explained by return and downside
risk. Down side risk is introduced as a risk measurement index, it means, the probability of
minus return volatility in the future. In modern theory, risk in introduced as a volatility around
the mean of return and is calculated by variance. Variance is considered as a balanced risk
criterion, however in booming market, duo to investor's short term goals, seek to gain
positive fluctuation and just negative fluctuation is considered as a risk. So in this situation
and according to investor's risk aversion, investors are more risk averse than to find higher
return. In other word, risk is not balanced and severely tends to downside risk. This theory,
recognize the risk that is related to investor's expected return. Other results that are better than
expected return are not considered as a risk.

The advent of Value at Risk criterion as one of the accepted methods for quantifying
market risk is the most important stage in risk management revolution. The word ‘VaR’ was
introduced in a report by group of thirty in 1993. In that report ‘VaR’ was introduced as one
of the branches of capital risk management. That report contributed a lot and emphasized on
importance of risk measurement for tracing aim. Afterward, VaR became the most famous
assessment economic risk method and as a risk measurer is widely used for tracing aim.
Especially when G.P Morgan introduced the risk metrics in 1994. Today, value at risk is the
most famous and applicable risk measurement method. This method is an intuitive method
with capability of calculation and easy to understand to measure extended portfolio risk. This
criterion can be introduced as a maximum loss in a specific time horizon with a confidence
interval in a usual market situation. Although value at risk is a usual risk criterion, but it has
undesirable mathematic features. So, Artzener and et al in 1992 introduced the idea similarity
as a set of risk measurement feature in relation with the tail of distribution function.
Conditional Value at Risk is one of the most important risk measurer that is introduced by
Rakefeller and uryaseff in 2000. CVaR has shown better feature than VaR and it can tell us
that if the condition is unfavorable, how much loss do we expected (Artzener, Delbaen 1992).

To use natural selection process simulation for solving optimization problem is referred to
1930s and in 1960s the study of Fugle, Halen and Shefel has built the basis of evolutionary
algorithms. Evolutionary algorithms are meta-heuristic stochastic optimization methods based
on population that are referred to Darvin evolution theory in 1846. Evolutionary algorithms
start with random initial population then the fitness of any member is evaluated by objective
function. These algorithms in several divisions, are recognized as intelligent optimization
methods and evolutionary calculation. The advantage of these algorithms is that they can
search the optimal point without derivative of cost function. Genetic algorithm and Particle
Swarm algorithm are the example of these algorithms.

Yin and Wang in 2006 used PSO algorithm in nonlinear source allocation problem and
compare the efficiency of this algorithm with GA. Finally, they concluded that PSO algorithm
is more efficient than GA. Kura in 2009 used PSO algorithm in constrained portfolio
optimization. In that paper he used weekly stocks prices of a few companies and drew
efficient frontier. Finally, he concluded that, PSO algorithm was really successful in portfolio
optimization. In Iran, Abdolalizadeh and Eshghi (1382) study portfolio optimization by GA.
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Khaluzadeh and Amiri (1385) despite the classical models that are based on variance and used
for optimizing portfolio, he used value at risk as a portfolio risk criterion. Raie and Alibeigi
(1389) in a study used PSO algorithm in portfolio optimization based on mean-variance
model. In this study we use PSO algorithm in Markowitz model with the assumption of
available data and add constraints in three different levels. In past years, PSO algorithm has
been used for several research and application fields, and it is indicated that in several
examples, PSO algorithm has better, faster and cheaper results than other methods (Kamali,
2014). This algorithm despite GA, does not have mutation and crossover operator. The other
reasons that make PSO algorithm so exceptional and attractive is that, this algorithm need
very few parameters for setting. A version of algorithm with few parameters can be used in
several applications (Raie and Alibeigi, 1389). In Heidari thesis (1391) the superiority of PSO
algorithm to GA and other algorithms in solving portfolio problem is indicated.

3. Constrained Portfolio Optimization Problem

To understand this problem consider a set of limited capital i = 1,2,...,n that can be any
financial capital, stocks and bonds. At the moment, the most important institution
performance evaluation is rate of stocks return. To put it simply, the profit that can be gained
in an investing is return that is in specific time duration and according to its beginning and
end of period prices. Assume that R; is the return of stock S; and R* = (Ry, Ry, ...,R,) is the
transposed profit vector of stocks Si, S,, ..., S, and vertical vector x; is indicated the amount

. . * =, . N e e
of invested money in stock S;. x€R™ 2150 R™ is a favorable investors profit and i is a
covariance between two stocks. Markowitz mean-variance model is:

n

-

minimize XXy
i=1 j=1
n
Rix; = R*
; i=1
subject to f
Zx[ =1 .x; =20
[1]

In Markowitz model, with increase in assets, calculation volume increased too much.
Covariance criterion can be an acceptable criterion for financial assets that have normal
distributions and traded in efficient market. Otherwise, it isn't a proper risk criterion. Down
side risk measures is divided into two parts, semi measure of risk and risk measures based on
percentile. Value at risk and conditional value at risk are the most famous in the risk measures
based on percentile division. VaR is a decreased risk measure and can indicate the worst loss
in usual market condition in a specific time duration and confidence level. In (figure 1-A)
although value at risk is a usual risk criterion but it has unfavorable mathematic features.
CVaR, as arisk criterion has been shown better features than VaR. This method indicates that
if the condition is not favorable, how much loss we expect to tolerate. In other word, it says

the amount of loss in n-days’ time period in a condition that we are in l1-a percent in left
bulge part of probability distribution curve figure 1-B)(Khaluzadeh & Amiri, 1385).

Figurel: probability distribution curve of asset return A-VaR criterion & B-CVaR criterion
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Suppose that f(x, y) is the risk related to decision vector and random vector

m . . . . . . . . .
YeR™ For simplicity, first we assume that y follows a continuous distribution and its density
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function is p(0). Also we assume that for any x, £ (f(xw)D) <o porxEX probability of
f(% ¥) is not more than & threshold:

I:F'(.‘L'.ﬂf:] = J; P(J':]dj-'
(%y)sa 2]

For given confidence level of B and x value at risk is:
VaRg(x) = min{e € R:p(x. ) = f}

1
CVaRp(x) = —— flx.y)p(y)dy
1—'3 f,:,'-lj-]zuaﬁﬂ[rl [3]
Rakefeller and uryasef (2000) has shown that CVaR calculation can be solved by

determined function minimization with respect to ® (Rockefeller, Uryasev 2003).

1
Flra)=atq—p] @)= POy
:II‘ m

[4]

Because in calculation, the most difficult part of CVaR optimization is to calculate the
integral of multi variables and unsmooth function. To solve this problem we can use
estimation. Mont Carlo simulation is one of the most efficient methods for calculating high
dimensional integral. Rockefeller and urease (2000) through these methods can estimate

Fg (x, a) in a way that *'[] shows k-the produced sample by random sampling with respect to
y and s shows the number of samples (Ogryczak, Sliwinski 2010).
. 2

1 +
Fplx,a)=a + WZ{I_(-"-J’[M} - ‘-'I}
k=1

EVHRF(-IJ = MiNgepFplx, a) [5]

Now, with respect to considered risk criterion, Markowitz model can be reformed by
adding three applicable constrained. The first constrained is the sum of all stocks weight that
must be equal to one. Next constraint is upper and lower bound. If we want to exert the
number of chosen asset constraint for investing, the model should be like the bellow model
and is called Cardinality Constrained Portfolio Selection.

minimize A[R(x)]=(1-=21)

subject to 4 x=1

(6]
Despite the first model (1) that is unconstrained portfolio based on variance as a risk

criterion, in this study, we have R(x), CVaR as a risk criterion. Ais a parameter that can be
changed in [0,1] limitation and with respect to investor point of view the specific value can be
chosen. For example, if A= 0 311 amount of weight coefficient is allocated to return. And if
A=

1, all amount of weight coefficient is allocated to the risk and without respect to return

the least risk portfolio is chosen. If 4 is determined between 0 and 1, both risk and return are
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considered to determined portfolios (Mozafari, Taffazoli 2013). Z; parameter is the decision
variable for investing in any stock. If z; is equal to one, it means stock i can be in the

portfolio. The total number of all stock is related to the third constraint that is k number and &:

and O: are upper and lower bounds. There is no effective and efficient algorithm in
mathematic programming to have exact solution. So, meat-heuristic algorithm is chosen to get
the optimized weight of stocks (Xu, Zhang 2010).

4. Modified Particle Swarm Algorithm

The use of PSO algorithm in some problem has shown that, PSO algorithm gets to
premature convergence and this result in inability in solving multiple peaks problems. To
remove this problem, we can modify the algorithm with a little change. w is the inertia
coefficient that has the most important role in algorithm's performance. This coefficient
makes a balance between local and global search. Little amount of w result in premature
convergence whereas high amount avoid convergence. Usually, in implementation of PSO
algorithm, w must be adjusted during training process. One of the way to adjust w is linear
decrease of this amount (He, Wen 2003). A better way that has better result, is modeling w
inertia coefficient. In this way, inertia coefficient is according to distance between particle of
one generation and the best location that has been experienced by all particles. The amount of
wis:

_ L dist;
w = wo( max _dist
| o
dist; = |Z (ghesty — x;4)°
d=1

max _dist = argmax{dist;)
i

In formula above, wy is a random number in [0.5, 1] and dist; is a Euclidean distance
between i-th particle and gbest the best location has been experienced by all. The problem has
D dimension and max_dist is the furthest distance between a particle and gbest in each
generation. The modeling of inertia coefficient cause to guide the furthest particle to the best
location and finally, converge in optimize point. To reach to this optimized point and
avoidance of premature convergence, we should assure of the particle motion in the next
level. To reach to this aim, the location updating equation should be reformed as this:

xglt]l = (1 —ploxglt — 1] + vy 4[t]
In formula above, £ is a random number with uniform distribution in [-0.25, 0.25]. So, by
adding this part to equation, particles get more mobility, even when they have low speed

(Suresh, Ghosh, Kundu 2008) and (Wang, Wang 2010).

5. Modeling and Prediction of Stocks Price

Nowadays, one of the important favorable subjects of economist and financial analyst, is
to determine price volatility trends. And now, there a lot of point of views about this subject.
In this situation and with respect to unavailable precise information about effective factors on
market volatility, predicting these changes is not easy at all. And based on this subject,
efficient market theory has been mentioned. This theory mentions that, stock price volatility
by this public and available information is unpredictable. In effect, this theory is based on
random walk theory. To mention a theory against above theory means the predictability of
stocks prices (khaluzadeh & Khakisedigh, 1377). Since the middle of 1970s and specific from
1980, new and extended attempt for predictability of stocks price by new mathematical
method, long time series and professional tools started. A lot of test on prices and stock's
index in countries like England, United States, Canada, Germany and Japan has done in order
to show fix structure of stocks price. Since 1997, in this field in Iran and in Tehran Stock
Exchange some study has started. By using chaos theory that is powerful tool for analysis and
process of stocks prices information, the related time series process will be distinguished from
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a random time series. And it is on the (R/S) basis or can be mention, the alteration of
fluctuation source of time series of stock price, shows the consecutive nature of stock price
(Khaluzadeh & Amiri, 1385). The purpose of this section, is to solve constrained portfolio
problem by the mentioned algorithm for next day. So, in order to estimate risk and return
parameters or estimate capital value for next day, price prediction methods are used. To do
this, spatial and efficient algorithms can be used for predicting the next day of available
stocks prices with specific time period. Then, we can repeat optimization problem for new
time series and estimate the value of portfolio with its risk for the next day.

6. Empirical Results

In this study, portfolio problem is solved by historical data 700 days of 30 active
industries. The time period is from Aug 18, 2008 to Sep 4, 2015. 20 companies are chosen for
portfolio and through meta-heuristic algorithms the optimized stock's weight are gained. The
first constraint is, investing in 15 companies of 20. The upper bound is 0.3 and lower bound is
0.01 for any weight. In formula number [6] the risk and return coefficient is 0.5. As much as
the risk decreases and the value of portfolio increases, the cost function will decrease. So, the
purpose is to minimize cost function. First, with available price series in the time period, we
get the weight of optimized portfolio by two PSO and MPSO algorithms. The software we use
in this study is MATLAB. The figure below shows the way that cost function of two
algorithms passed. It seems the cost function in MPSO algorithm is lower.

Figure2: cost function in each iteration for PSO & MPSO algorithms
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In below table shows, calculated portfolio value, risk and cost function for the two
algorithms.

Tablel: comparison of final result for two algorithms

-5323.945 10324.177 5000.321

_ -5588.964  12388.727 6799.762

Also, below table shows, the weight that is got by two algorithms in constrained portfolio
problem.
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Table2: the weight allocated to any company in portfolio

company name weights by PSO weights by MPSO

1 Takin Co 0.0522 0.0123
2 Bu-Ali Investment 0 0

3 Transfo Iran 0.0176 0.01
g | Jabercbn Hayan 0.0511 0.0141

Darou

5 Isfahan Folad 0.0274 0.0116
6 Fars Khozestan 0 0

7 Saipa 0 0

8 | Service Anformatic 0.2997 0.2997
9 Behshar Tosech 0 0.0104
10 Sina Bank 0.0106 0
11 | Ghadir Investment 0.1599 0.1249
12 Building Iran 0.0246 0

13 Roy Iran 0.0202 0.01
14 Ama 0.0114 0.0112
15 Yasa Iran 0.1399 0.2934
16 Traktor 0.0241 0.0119
17 Iran Chini 0.0213 0.0105
18 Mokhaberat Iran 0 0.0105
19 | Abadan 0.1298 0.158
20 Hafari Shomal 0.01 0.0111
21 sum 1 1

In the next level, in order to calculate and estimate the value of optimized portfolio and
risk for the next day, we should predict the prices. In order to do this, AR(10) is used and the
parameters of this model are estimated by RLS method. The prediction of this model is based
on a step forward method. In this model, 80 percent of data are used as a training data and
other 20 percent are used as a test data. For example, in this figure a time series is showed and

the price of day 701 is predicted by price of 700 days.
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Figure4: estimation and prediction of a next step prices by RLS method
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In order to be assuring of the estimation accuracy, we predict the price of days 650-700
and make a comparison between the real price and predicted price. To show the error of
prediction, standard deviation is used. The error of estimation is the absolute difference of
estimated prices and real prices as below:

Table 3: the absolute standard deviation of estimation error for 50 days price by RLS method

Takin Co 126 Ghadir Investment 95
Bu-Ali Investment 19 Building Iran 81
Transfo Iran 84 Roy Iran 73
Jaberebn Hayan Darou 138 Ama 239
Isfahan Folad 122 Yasa Iran 317
Fars Khozestan 96 Traktor 89
Saipa 46 Iran Chini 164
Service Anformatic 132 Mokhaberat Iran 67
Abadan
Behshar Toseeh 109 Petroloshimi 202
Sina Bank 53 Hafari Shomal 98

To show the applicability of this method, this process has been done for all the stocks. In
other word, we optimized portfolio with 50 predicted and real data by MPSO algorithm. In
this table, is indicated that there is little difference between real and predicted cost function,
portfolio value and risk. The optimized results are got from 100 iteration of algorithm.

Table 4: comparison between real and predicted data by MPSO algorithm in CCPS problem

-5610.215 12903.803 7293.587
-5620.821 12881.341 7260.518
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7. Summery and Conclusion

The optimal portfolio selection problem has always been the most important issue in the
modern economy. In this Study, It has been shown that how an investment with n risky share
can achieve the certain profits with less risk that spread between stocks. Such a portfolio, it is
called an efficient portfolio and it is necessary to find solving the optimization problem.
Hence, the Improved Particle Swarm Optimization algorithm is used. The value of Portfolio
and its risk are applied as the parameters in optimizing aim and criterion value exposed to
contingent risk. Three intended applications have been indicated to the portfolio. In the next
stage ,to evaluate and validate the method and to estimate the value of the portfolio in the next
days and hold the series of the stock prices ,within a specified period, to predict the price and
The Autoregressive method algorithms is used for modeling of the time-series. Practical result
achieved for solving the portfolio optimization problem in Tehran Stock Exchange for the
next day, by choosing the basket which includes 20 companies among the 30 most active
industry indicates the performance and high capability of the algorithms and used in solving
constrained optimization and appropriate weighted portfolios.

In present paper, the particle swarm algorithm and its modified version are used to
optimize constrained portfolio. The results mention that MPSO is more efficient than PSO
algorithm. Then, in order to make this study more applicable AR(10) model and RLS method
are used to predict stocks price time series for the next day. Also, portfolio value and risk are
predicted and compared with the result of real data. In order to make this result more reliable,
we repeat this process and get the results for ten days. The results indicate that there is a little
difference between the results of real and predicted data and this fact shows the high
capability of this method in predicting optimized portfolio.
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